
Higher-Order Asynchronous E�ects (standard 30 min talk proposal)

DANEL AHMAN, MATIJA PRETNAR, and JANEZ RADEŠČEK, University of Ljubljana

A growing number of language designers and programmers have started to embrace algebraic e�ects (Plotkin and Power 2002)

and e�ect handlers (Plotkin and Pretnar 2013) as a useful and �exible programming abstraction because they allow programmers

to uniformly express a wide range of e�ectful behaviour, such as state, rollbacks, exceptions, and nondeterminism (Bauer and

Pretnar 2015), concurrency (Dolan et al. 2018), statistical probabilistic programming (Bingham et al. 2019), and even quantum

computation (Staton 2015). However, despite them covering many examples, the treatment of algebraic e�ects has remained

synchronous in nature, meaning that when executing code with algebraic e�ects, an algebraic operation op’s continuation is

blocked until op is propagated to some implementation of it (e.g., an e�ect handler or a runner (Ahman and Bauer 2020)) and

that implementation �nishes executing. While such behaviour is necessary in some situations, it needlessly forces all uses of

algebraic e�ects to be synchronous. To address this shortcoming, we recently showed how to also accommodate asynchrony

within algebraic e�ects (Ahman and Pretnar 2021). In the �rst part of the talk, we will recall the key points of this work,

before discussing some extensions to it to enable programmers to write more realistic asynchronous programs more naturally.

A brief recap of asynchronous e�ects

Our approach to asynchronous e�ects is based on decoupling of the execution of algebraic operation calls into three phases:

"op [+ /G]

executing op’s implementation︷︸︸︷
{∗ return,

interrupting the blocking of the main program with op’s result��
. . . { op (+ ,~.")

signalling that some implementation of op needs to be executed

OO

︸︷︷︸
main program’s execution blocked

" [, /~] { . . .

and observing that these phases can be separately captured by natural non-blocking programming abstractions, which we

formalise in a core calculus for asynchronous e�ects, called _æ, accompanied by a prototype implementation available at

https://github.com/matijapretnar/ae�/. We demonstrate the �exibility of _æ using examples ranging from a multi-party web

application, to preemptive multi-threading, to executing remote function calls, to implementing a parallel variant of runners.

Signals. In order to indicate that an operation’s implementation needs to be executed, we allow our programs to issue

signals, written ↑op (+ , #). These are similar to algebraic operation calls in that once issued, they start propagating outwards.

Interrupts. The recipient of a signal (e.g., op’s implementation) sees it as an interrupt, written ↓op (,, #). Importantly, while

interrupts may again look like algebraic operation calls, then operationally they instead behave like e�ect handling, by propagat-

ing inwards into a computation, e.g., as ↓op (,, return+) { return+ and ↓op (,, ↑op′ (+ , #)) { ↑op′ (+ , ↓op (,, #)).
Interrupt handlers. Programs can react to interrupts by installing interrupt handlers, written promise (op G ↦→ ") as ? in # ,

where" is the code that gets executed when the interrupt handler is triggered (see reinstallable interrupt handlers below). The

continuation # can refer to the result of handling the interrupt using the variable ? bound in it. Importantly for the type safety

of _æ, we do not assign ? an arbitrary type, but a distinguished promise type 〈- 〉, where- is the type of values provided by the

handler. _æ’s type system then ensures that signal payloads cannot refer to these promise-typed variables, making it type safe

to propagate them past handlers, as promise (op G ↦→ ") as ? in ↑op′ (+ , #) { ↑op′ (+ , promise (op G ↦→ ") as ? in #).
To extract the actual result from the promise-typed variable ? , the continuation # can use the await ? until 〈G〉 in # ′

construct, which blocks the execution of # ′ until it is provided with a ful�lled promise 〈+ 〉 in place of ? . Importantly, in

contrast to await, signals, interrupts, and interrupt handlers never block their continuations # , providing the desired asynchrony.

Parallel processes. In order to model the environment of a program, _æ also includes a very simple model of parallelism,

given by parallel processes consisting of individual computations (run ") and parallel compositions of processes (% | | &), and

also outwards propagating signals and inwards propagating interrupts. In contrast to many other process calculi, our parallel

composition operation | | does not perform any synchronisation, but instead it turns outwards propagating signals in one

process into inwards propagating signals for all processes parallel to it, e.g., as ↑op (+ , %) | | & { ↑op (+ , % | | ↓op (+ ,&)).
Now, while _æ can indeed be used to capture a wide range of asynchronous examples (see above), it also has many notable

limitations: server-like programs make excessive use of general recursion to de�ne appropriate interrupt handlers; payloads

https://github.com/matijapretnar/aeff/

2 Danel Ahman, Matija Pretnar, and Janez Radešček

of signals and interrupts have to be ground values to ensure type safety; and it is not possible to dynamically create new

parallel processes. In the second part of the talk, we will present our ongoing work on removing these limitations from _æ.

Reinstallable interrupt handlers

As noted above, many server-like programs written in _æ end up making excessive use of general recursion, so as to reinstall

interrupt handler(s) after the server has �nished processing the client’s request. Unfortunately, this results in programmers

de�ning many auxiliary recursive functions, obfuscating the resulting code. Furthermore, the heavy reliance on general

recursion makes it di�cult to justify leaving it out of the core calculus, despite it being an orthogonal concern to asynchrony.

To address the above issues, we propose extending _æ’s interrupt handlers with the ability to reinstall themselves, by

allowing the handler code " to bind an additional variable : in promise (op G : ↦→ ") as ? in # . In contrast to e�ect

handlers, : does not refer to the continuation of the program (i.e., #), but instead to the act of reinstalling the given interrupt

handler. To make this intuition more concrete, the triggering of these interrupt handlers is captured operationally as follows

↓op (,, promise (op G : ↦→ ") as ? in #)
{ let ? = " [, /G, (fun () ↦→ promise (op G : ↦→ ") as ? in return ?)/:] in ↓op (,, #)

and non-matching interrupts are simply propagated inwards past the interrupt handler as before, i.e., if op ≠ op′, then

↓op′ (,, promise (op G : ↦→ ") as ? in #) { promise (op G : ↦→ ") as ? in ↓op′ (,, #). Server-like processes can then

be written more concisely, e.g., as promise
(
request G : ↦→ handle the request; issue a response signal;: ()

)
as ? in return ().

Higher-order payloads via Fitch-style modal types

In order to ensure that values which are meant to be mobile (e.g., payloads of signals) cannot refer to the promise-typed

variables bound by interrupt handlers, _æ’s type system imposes a very strong syntactic restriction on the types of the

payloads of signals and interrupts: they have to be ground types�, given by �nite sums and products of base types. As a result,

e.g., one can only send the arguments needed for the execution of remote function calls but not the functions themselves.

To address this limitation, we propose extending the payload types� with a Fitch-style modal (box) type [-], together with

its usual introduction and elimination rules (Clouston 2018), including a corresponding change to the typing rule for variables:

Box-Intro

Γ,� ` + : -

Γ ` [+] : [-]

Box-Elim

Γ ` + : [-] Γ, G :- ` " : .

Γ ` unbox + as [G] in " : .

Var

- is mobile or � ∉ Γ′

Γ, G :-, Γ′ ` G : -

In this presentation of modal types, the tokens � limit which variables one is allowed to use from a program’s context when

introducing a boxed value [+]. In our setting, this results in programmers being able to use ground- and box-typed variables

to construct [+], but not promise-typed ones, capturing our intuition that [-] is the type of (mobile) values of type - that are

safe to be sent to other processes, and that promise-typed variables are to be only used for local intra-process synchronisation

on the results of executing interrupt handlers. Importantly however, when constructing a (payload) value of type [- → .],
the boxed function can itself install additional interrupt handlers, it just cannot refer to the results of any enveloping ones.

Dynamic process creation via Fitch-style modal types

Having extended _æ with modal types to enable higher-order payloads to be sent along with signals and interrupts, it turns

out the same mechanism can be reused to extend _æ also with dynamic process creation, written spawn (", #), and typed as

Spawn

Γ,� ` " : 1 Γ ` # : .

Γ ` spawn (", #) : .

where " is the new process to be spawned, and # is the continuation of the existing program. Here, modal typing is used

to ensure that " cannot refer to any enveloping interrupt handlers, making it safe to propagate it outwards past them, as

promise (op G : ↦→ ") as ? in spawn (#1, #2) { spawn (#1, promise (op G : ↦→ ") as ? in #2), and eventually to the

top-level of an individual computation, where " becomes a new parallel process, as run (spawn (", #)) { run " | | run # .

Using these last two extensions to _æ, it becomes possible to generalise our remote function calls example to allow clients

to upload their own functions for remote execution, and to create a new process for each such function or its execution.

Higher-Order Asynchronous E�ects 3

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their useful feedback. This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 834146 . This

material is based upon work supported by the Air Force O�ce of Scienti�c Research under awards number FA9550-17-1-0326

and FA9550-21-1-0024.

REFERENCES
D. Ahman and A. Bauer. 2020. Runners in action. In Proc. of 29th European Symp. on Programming, ESOP 2020 (LNCS, Vol. 12075). Springer, 29–55.

D. Ahman and M. Pretnar. 2021. Asynchronous E�ects. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.

A. Bauer and M. Pretnar. 2015. Programming with algebraic e�ects and handlers. J. Log. Algebr. Meth. Program. 84, 1 (2015), 108–123.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman. 2019. Pyro: Deep Universal

Probabilistic Programming. J. Mach. Learn. Res. 20, 1 (Jan. 2019), 973–978.

R. Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Proc. of 21st Int. Conf. on Foundations of Software Science and Computation Structures, FOSSACS 2018
(LNCS, Vol. 10803). Springer, 258–275.

S. Dolan, S. Eliopoulos, D. Hillerström, A. Madhavapeddy, K. C. Sivaramakrishnan, and L. White. 2018. Concurrent System Programming with E�ect Handlers. In

Proc. of 18th Int. Sym. Trends in Functional Programming, TFP 2017. Springer, 98–117.

G. D. Plotkin and J. Power. 2002. Notions of Computation Determine Monads. In Proc. of 5th Int. Conf. on Foundations of Software Science and Computation
Structures, FOSSACS 2002 (LNCS, Vol. 2303). Springer, 342–356.

G. D. Plotkin and M. Pretnar. 2013. Handling Algebraic E�ects. Logical Methods in Computer Science 9, 4:23 (2013).

S. Staton. 2015. Algebraic E�ects, Linearity, and Quantum Programming Languages. In Proc. of 42nd Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL 2015. ACM, 395–406.

	References

